當模型準備好部署到生產中時,數據科學家將其交給機器學習工程師。然后,亞洲服務器租用 歐洲服務器,機器學習工程師必須將代碼轉換為生產語言(如Java、Scala或C ++),或者至少優化代碼并與應用程序的其余部分集成。代碼優化包括將任何數據查詢重寫為ETL作業,分析代碼以查找任何瓶頸,以及添加日志記錄,、容錯和其他生產級功能。
1.數據科學是一項團隊運動
最近,人們對人工智能和機器學習的興趣激增,這是由于能夠在大量結構化、非結構化和半結構化數據上快速處理和迭代(訓練和調整機器學習模型)。幾乎在所有情況下,機器學習都得益于在更大、更具代表性的樣本集上進行訓練。
5.更快的數據科學更有利于業務
在軟件即服務模式中,大部分開銷都會消失。云計算的基于使用情況的定價模型對于機器學習工作負載很有效,而機器學習工作負載在本質上是突發的。云計算還使探索不同的機器學習框架變得更容易,云計算供應商提供模型托管和部署選項。此外,包括Amazon Web Services、Microsoft Azure和Google Cloud在內的云計算服務提供商提供智能功能作為服務。這就減少了將這些功能集成到新產品或應用程序中的障礙。
依靠筆記本電腦或本地服務器的數據科學家們在容易入門和易于擴展和生產電離機器學習模型之間做出了一個不明智的權衡和選擇。雖然在使用筆記本電腦或本地服務器時,數據科學團隊的運行速度更快,但云計算平臺提供了更大的長期優勢,其中包括無限制的計算能力和存儲、更容易的協作、更簡單的基礎設施管理和數據治理,最重要的是,生產時間更快。
因此,毫不奇怪,人工智能機器學習操作的重要部分圍繞數據物流展開,即數據集的收集、標記、分類和管理,反映了人們試圖通過機器學習建模的現實世界。對于擁有大量數據用戶的企業而言,數據物流已經很復雜。當數據集的多個本地副本分散在這些用戶中時,問題才會變得更加嚴重。
機器學習模型的預測僅與用于訓練它們的數據一樣準確和具有代表性。人工智能和機器學習的每一種表現都可以通過提供高質量的數據來實現。例如,提供轉向指示的應用程序已存在數十年,但由于數據量較大,如今更加準確。
在云端開始使用數據科學和機器學習的最快和最具成本效益的方法是使用基于云計算的數據科學和機器學習平臺。至少在這個用例中,筆記本電腦的未來發展是有限的。
算法和機器學習模型構成了企業高級分析和機器學習難題的一部分。數據科學家、數據工程師、機器學習工程師、數據分析師和公民數據科學家都需要在這些元素上進行協作,以便為業務決策提供數據驅動的見解。
在筆記本電腦上運行數據科學的所有上述問題都會導致業務價值的損失。數據科學涉及數據準備、模型構建和模型驗證中的資源密集型任務。數據科學家通常會重復數百次嘗試不同的特性、算法和模型規范,然后才能找到他們要解決的業務問題的正確模型。這些迭代可能需要大量的時間。圍繞基礎設施和環境管理、部署和協作施加瓶頸可能進一步延遲企業實現價值的時間。
在充斥著數據的世界中,數據科學家為企業產生洞察力提供幫助,并進行預測,以實現更明智的業務決策。通常,這些數據科學家是統計分析和數學建模方面的專家,并且精通編程語言,例如R或Python。
如今,數據科學家可以利用許多開源機器學習框架,如R、SciKit Learn、Spark MLlib、TensorFlow、MXnet和CNTK。但是,在筆記本電腦或本地服務器上管理這些框架的基礎設施、配置和環境非常麻煩。管理基礎設施的額外開銷會占用核心處理數據科學活動的時間。
4.中央存儲庫可提高數據準確性和模型可審計性