隨著技術的不斷發展,技術的種類越來越多,人們不可能掌握全部的技術,但是技術對于人們的選擇有了太多太多,這時候在選擇什么技術的時候,人們往往就會陷入迷茫,不知道應該選擇什么樣的技術,不清楚自己應該從什么技術下手,甚至說會懷疑技術的作用,認為有些技術沒有意義,不知道有什么用。今天我們探討一下數據科學領域內的技術存在的意義,分析一下大數據分析是否雞肋,在數據科學技術體系中,最高價值技術到底是什么,以及在人工智能領域中反對派的聲音越來越大的時候,人工智能是否還能走下去,還能走多遠?
大數據分析并不雞肋
在計算機誕生的70年后,單臺計算機的計算性能逼近物理極限,伴隨計算機發展的摩爾定律逐漸失效。在這70年的發展過程中,剛開始是可以用摩爾定律進行準確的描述的,1965年,英特爾創始人之一戈登摩爾在考察計算機硬件的發展規律后,提出了著名的摩爾定律:
該定律認為,同一面積芯片上可容納晶體管的數量,每隔16-24個月將翻一倍,計算性能也將翻一倍。換而言之,也就是每隔16-24個月,單位價格可購買到的計算能力將翻一倍。在隨后的幾十年內,VPS,摩爾定律被無數次的被印證。而直到現在,計算機性能已經逼近極限的情況下,摩爾定律似乎已經失效了。
發展的期間伴隨著摩爾定律不斷的生效,在計算機方面同步發展的還有網絡寬帶和物理的存儲容量,半個多世紀以來,存儲器的價格幾乎下降到原來價格的億分之一。
而網絡寬帶的的速度也在不斷的突破極限。
隨著這些物理硬件的升級,計算機領域內便產生了OTT式的技術革新,誕生了分布式計算和量子計算機技術,而這兩者的出現,也必將決定性的改變計算機資源供給端的情況。
分布式計算機技術,已經逐漸成為大數據領域底層IT架構的行業標準,分布式計算可以實現一個計算目標可以調配無限計算資源并予以支持,解決了大數據情境中運算量過大、超出單臺物理機運算承受能力極限的問題,并且同物理計算資源協同調配,為后續的云計算奠定了基礎。客觀 的講,分布式計算機技術使計算資源趨于無限。
而量子計算機技術將使單體計算能力擁有質的飛躍。但是在量子計算機核心技術尚未突破之時,人類面對呈現爆發式增長的數據束手無策….
在經過這漫長的探索后,人類現在決定先借助分布式計算技術實現新的一輪OTT式技術革新,而此舉將不僅解決了海量數據存儲與計算問題,還有希望幫助人類徹底擺脫計算資源瓶頸的束縛。計算資源無限,世界將會怎樣….
但是從大數據技術的發展現狀來看,真正的難點還是在于底層工具的掌握,由于發展尚處于初級階段,還需要人們掌握大量的底層工具,這條道路因為走得人少所以才會顯得泥濘不堪,只有將基礎工具發展和掌握成熟之后,才可以降低使用者的門檻。
對于我們而言,這條路難么?真的很難!但是是值得我們客服這條路上的困難的,因為收益會非常的劃算,這條路的難處在于要掌握很多底層工具,為什么?因為走這條路的人少,現在還是一條泥巴路,很難走,但是為什么是值得我們克服困難也要走下去呢,是因為只要量子計算機不出現、隨著摩爾定律的失效、數據量還在增加,大量過路的需求會催生一條又一條高速公路,然后鋪路的大公司設卡收稅,泥巴路遲早會變成高速公路,但只要你先過去,就能看到別人看不到的風景。
從計算機由DOS系統到桌面系統,Python機器學習由源碼到算法庫,不一直都是這樣么。
機器生產釋放腦力,機器學習釋放腦力
數據革命的本質