隨著數據中心的工作量螺旋式上升,越來越多的企業開始關注人工智能(AI),希望通過技術幫助它們減輕IT團隊的管理負擔,同時提高效率和削減開支。
人工智能承諾將工作負載實時自動移動到最高效的基礎設施,既包括數據中心內部,也包括由on-prem、云和邊緣環境組成的混合云設置。隨著人工智能對工作負載管理的轉變,未來的數據中心可能會與今天的設施有很大的不同。一個可能的場景是由遠程管理員管理的小型、互聯的邊緣數據中心集合。
InfosysKnowledgeInstitute是一家專注于商業和技術趨勢分析的機構,其負責人JeffKavanaugh表示,由于各種因素,包括更激烈的競爭、通貨膨脹和大規模的預算削減,許多組織都在尋找降低數據中心運營成本的方法。他說:“人工智能和自動化已被證明是工作量管理的強大工具,因為它將員工從耗時和平凡的任務中解放出來,讓他們專注于實際上需要人類來完成的工作。”
大多數數據中心管理人員已經使用各種傳統的非人工智能工具來協助和優化工作負載管理。然而,專業服務公司畢馬威(KPMG)咨詢總監肖恩?肯尼(SeanKenney)表示,這些工具往往是被動的,而不是主動的。“他們對數據中心的問題做出反應,但他們不收集數據來確定減少問題行為的任何遠見,”他指出。
芝加哥伊利諾伊大學(UniversityofIllinois)生物醫學和健康信息科學臨床助理教授桑ketShah認為,人工智能現在正準備幫助那些發現自己沒有可靠方法來預測或規劃未來需求的數據中心管理者。他解釋道:“有了人工智能,能力和馬力可以以一種更有效的方式分配,允許組織擴大規模,變得更靈活。”“對于那些數據需求快速變化的(管理人員)來說,將某些流程自動化并在必要時轉移權力,最終將降低成本。”
利用人工智能技術管理數據中心的想法并不新鮮。例如,谷歌曾在2014年披露,它正在利用收購英國人工智能專家DeepMind所獲得的技術,加強其幾個站點的數據中心設施和設備管理。今天,人工智能工作負荷管理領域已經大大擴展到包括許多初創公司,如DLabs、digitate、RedwoodSoftware和TidalSoftware。思科(Cisco)、IBM和VMware等規模較大的公司也已開始進入該市場。
與人工智能的大多數事物一樣,工作量管理技術正在迅速發展。華盛頓大學信息學院副教授BillHowe指出:“有很多選擇和限制,但通常都有辦法減輕這些限制。”“我不認為選擇正確的方法和工程解決方案有什么問題……與其他任何復雜的人工智能應用程序相比,工作量管理的挑戰性更大或更小。”
滿足需要
對于大多數數據中心管理者來說,最優先考慮的是優化運營以滿足峰值需求。然而,無論他們計劃和準備得多么仔細,需求的高峰和低谷往往仍在他們的控制之外。商業咨詢和咨詢公司凱捷北美公司(CapgeminiNorthAmerica)的人工智能工程副總裁古瑟姆·貝利亞帕(Gouthambelliaappa)表示:“人工智能能帶來的獨特改進在于,它能理解工作量模式,并將這些需求與數據中心的容量匹配起來。”
人工智能管理承諾將數據中心團隊從一系列平凡、重復的任務中解放出來,包括服務器管理;安全設置;計算、內存和存儲優化;負載平衡;還有電力和冷卻分配。科技市場咨詢公司ABIResearch首席分析師LianJyeSu表示:“所有這些工作都可以通過人工智能實現自動化或增強。”
IT管理軟件開發公司ManageEngine的人工智能和機器學習產品總監RamprakashRamamoorthy表示,人工智能可以幫助分析從單個機器收集的數據,并發現被監控參數中的異常。他補充說:“人工智能還可以幫助更早地預測故障和中斷,這可以幫助數據中心管理團隊減少停機時間,并使集群保持良好的運行狀態。”“人工智能還可以實現更好的溫度和電壓管理,從而直接降低運營成本,并有助于減少碳足跡。”
Ramamoorthy說,雖然可以使用各種人工智能方法,但工作負荷管理工具應該始終確保模型預測是完全可解釋的。他解釋說:“與其他領域相比,數據中心工作量管理中的人工智能系統做出的決定往往由一個或多個團隊共同作出。”因此,AI模型決策應該是可解釋的,允許IT團隊更好地理解模型決策的意圖并相應地采取行動。他指出:“人工智能模型的準確率最多可以達到80%到85%,所以這也有助于人類團隊通過正確解釋人工智能模型的決策來做出明智的決策。”如果人工智能模型能夠給它所給出的決策一個信心評分,那么它對于有效的工作量管理也將是有用的。